Extreme weather events

Name(s): 
Freak weather
Increasing incidence of record meteorological events
Nature

Extreme weather or extreme climate events includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Often, extreme events are based on a location's recorded weather history and defined as lying in the most unusual ten percent. The main types of extreme weather include heat waves, cold waves and tropical cyclones. The effects of extreme weather events are seen in rising economic costs, loss of human lives, droughts, floods, landslides and changes in ecosystems.

There is evidence to suggest that climate change is increasing the periodicity and intensity of some extreme weather events. Confidence in the attribution of extreme weather and other events to anthropogenic climate change is highest in changes in frequency or magnitude of extreme heat and cold events with some confidence in increases in heavy precipitation and increases in the intensity of droughts. Current evidence and climate models show that an increasing global temperature will intensify extreme weather events around the globe, thereby amplifying human loss, damages and economic costs, and ecosystem destruction.

Extreme weather has significant impacts on human society as well as natural ecosystems. For example, a global insurer Munich Re estimates that natural disasters cause more than $90 billion global direct losses in 2015. Some human activities can exacerbate the effects, for example some forms of urban planning, wetland destruction along the coast, building homes along a floodplain.

Source: Wikipedia

Incidence 
Total winter precipitation in the United States had increased by 10 percent since 1900 and that "extreme precipitation events" -- rainstorms that dumped more than two inches of water in twenty-four hours and blizzards -- had increased by 20 percent.

Global warming models indicate that rising global temperatures are likely to affect many atmospheric parameters including precipitation and wind velocity, and raise the incidence of extreme weather events, including storms and heavy rainfall, cyclones and drought. It may or may not be just coincidence that the Munich Reinsurance Company recorded more than 700 'large loss events' in 1998, compared with between 530 and 600 during previous recent years. The most frequent natural catastrophes were windstorms (240) and floods (170), which accounted for 85 per cent of the total economic losses (Munich Re 1998).

Claim 
Engineers designing storm sewers, bridges, and culverts used to plan for what they called the "hundred-year storm." That is, they built to withstand the worst flooding or wind that history led them to expect in the course of a century. That history no longer applies. "There isn't really a hundred-year event anymore... we seem to be getting these storms of the century every couple of years." The flood of the Red River over Grand Forks, North Dakota in the spring of 1997 was referred to by some as "a 500-year flood" -- meaning, that prediction of the old kind is finished; that these are not acts of God.
Narrower 
Value(s) 
Type 
(F) Fuzzy exceptional problems